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Introduction

Phytochemicals in broad terms are a synonym of plant
chemicals (phyto is Greek for plant); however, in common
usage the term is more limited in scope and usually refers to
plant chemicals that are bioactive and are not part of the
traditional nutrients, such as vitamins and minerals. Although
these compounds are generally viewed as non-essential for
normal body functioning, an increasing number of them have
been shown to possess disease-fighting activities, includ-
ing anticarcinogenic and anticancer activities™™. In this
review, we attempt to provide an overview of the discovery
and development of sulforaphane (SF) as a cancer chemopre-
ventive phytochemical. SF was isolated from broccoli in the
early 1990s in our laboratory as an inducer of phase 2
enzymes and has since been extensively studied by numer-
ous investigators and shows a highly promising cancer-fight-
ing ability®™,

Isolation and identification of SF

Prochaska and coworkers in the late 1980s developed a
cell-culture system (known as the Prochaska assay) for the
detection of inducers of phase 2 enzymes based on the
induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) in
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Sulforaphane (SF) is a phytochemical that displays both anticarcinogenic and
anticancer activity. SF modulates many cancer-related events, including suscep-
tibility to carcinogens, cell death, cell cycle, angiogenesis, invasion and metastasis.
We review its discovery and development as a cancer chemopreventive agent
with the intention of encouraging further research on this important compound
and facilitating the identification and development of new phytochemicals for
cancer prevention.

murine hepatoma Hepa 1cl1c7 cells grown in microtiter
plates™ 3, These researchers then used the assay to screen
organic solvent extracts of a broad collection of fruit and
vegetables for activities involved in the induction of phase 2
enzymes. Thiswas an important effort because it was recog-
nized that the induction of phase 2 enzymes, such as NQO1
and glutathione S-transferase (GST), is an important strat-
egy for achieving protection against carcinogenesis™* and
that consumption of fruit and vegetables reduces cancer
risk™!, They found that many extracts exhibited significant
inducer activities, but the broccoli extract was one of the
richest sources of inducer activity™. In an attempt to iden-
tify the inducer(s) in broccoli, we subjected the extracts to
multiple runs of fractionation by high performance liquid
chromatography and examined each fraction for inducer
activity using the Prochaska assay. We succeeded in isolat-
ing a liquid substance that was responsible for more than
80% of the total inducer activity in broccoli extracts. This
substance was soon identified as SF (1-isothiocyanato-4-
(methylsulfinyl)-butane) (Table 1). Approximately 9 mg of
SF was isolated from the extracts representing 640 g fresh
broccoli florets; however, it became clear later that the actual
amount of SF in the extracts was approximately 10-fold more*”,
Laboratory synthesis of SF provided a sufficient quantity
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Table 1. SF analogs: relation of structure to inducer activity

Concentration required
to double NQO1 (umol/L)"

Q
- 5=(CHg)¢=NCS
CH,

(Isolated SF) 02

0
CHi—S$—(CHy),~NCS  (Synthetic SF) 0.2

CHy—S—(CHp)—NCS 23
0

CHrﬁf(CHz)rNCS 0.8

CHy—CH,—(CHy);—NCS 15
0

CHy-C~(CH,)4—NCS 02
i

CH—C NCS

*Conentration of the test compound required to double the NQO!1
activity in a standard Prochaska assay in which cells were exposed to
the compound for 48 h.

for evaluation in animals, and SF was shown to significantly
induce both NQO1 and GST in multiple organs of mice after
oral dosing"®). Interestingly, a literature search revealed that
SF had already been isolated more than 30 years earlier
from hoary cress (a cruciferous weed) for its antimicrobial
activity">?” and a recent article reports that SF occurs in a
wide variety of plants”!. We also became aware at this time
that SF was one of a large number of naturally occurring
isothiocyanates (ITC)??, and several ITC had previously
been shown to inhibit carcinogenesis in animal experiments™.

SF analogs: relationship between structure
and inducer activity

In an attempt to ascertain the structural features of SF
and in the hope of generating a more potent inducer of phase
2 enzymes, more than 40 analogs of SF were synthesized and
evaluated using the Prochaska assay (see Table 1 for repre-
sentative analogs)!'"®*". SF isolated from broccoli is chiral,
possessing the R configuration, but both R-SF and the syn-
thetic (R,S)-SF show identical inducer potency. Change of
the oxidation state of the sulfur atom in the methylthiol group
from sulfoxide to sulfone reduced inducer activity 4-fold,
and the sulfide analog was more than 10-fold less active.
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Moreover, if the sulfoxide group was replaced with the
methylene group, the inducer activity was reduced 75-fold.
However, the sulfoxide group could be replaced with a car-
bonyl group without losing any inducer activity. A change
in the number of methylene units from 4 to 5 or 3 did not
significantly affect inducer activity (results not shown), nor
did the rigidity of the methylene bridge have much effect on
inducer activity, as shown by the finding that the norbonyl
ITC were almost equally active (Table 1). Although these
findings shed new light on the importance of SF structure,
we were unable to generate a more potent inducer of phase 2
enzymes than SF. Other investigators reported that con-
verting the -N=C=S of SF to various dithiocarbamate struc-
tures (-NH-CS-SR, R representing various alkyl groups) did
not generate a more potent inducer either>2°l,

Identification of edible plants or plant extracts
as carriers of SF

Subsequent studies in our laboratory showed that SF
was derived largely, if not entirely, from glucoraphanin, a
glucosinolate (B-thioglucoside N-hydroxysulfate) (Figure 1),
and that the conversion occurred during the preparation of
broccoli extracts!'”, This is not unexpected, however, be-
cause ITC are known to be synthesized and stored as gluco-
sinolates in plants and are released when damage to plant
tissues occurs. The conversion is catalyzed by myrosinase
(thioglucoside glucohydrolase), an enzyme that coexists with,
but is physically separated from, glucosinolates in normal
plants™!. Glucosinolates, including glucoraphanin, which
escape the plant myrosinase, can be partially (up to 45%)
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Figure 1. Enzymatic hydrolysis of glucoraphanin. ESP, epithio-
specifier protein.
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hydrolyzed in the intestinal tract because the enteric micro-
flora are known to possess myrosinase activity? =, How-
ever, the following observations indicate that it is extremely
difficult to estimate human exposure to dietary SF: (1) our
studies revealed that SF yield in different samples of broc-
coli (both frozen and fresh) sold in supermarkets might differ
by as much as 9-fold, and this difference is unrelated to their
physical appearance or whether grown under conventional
or organic conditions™”, thus, making it impossible to know
how much glucoraphanin is present in a particular vegetable
without actually measuring it; (2) different cooking condi-
tions are likely to exacerbate variations in SF yield, as steam-
ing or boiling vegetables will reduce the conversion of
glucoraphanin to SF by inactivating myrosinase and destroy-
ing SF (SF is heat-labile)™: (3) certain plants including broc-
coli possess epithiospecifier protein (ESP), which binds to
and converts the intermediate of glucoraphanin hydrolysis
(a thiohydroximate-O-sulfonate) to a nitrile at the expense of
SF (Figure 1), but mild heating of broccoli (60-70 °C) inacti-
vated ESP and preserved myrosinase and increased SF yield
3-7-fold®; and (4) although glucoraphanin not hydrolyzed
by vegetable myrosinase could be converted to SF in vivo
by the enzyme in the enteric microflora, the growth condi-
tion of the microflora significantly affects the hydrolysis®®!
and glucosinolate hydrolysis in humans appears to differ by
as much as 44-fold™,

Interestingly, our research also suggests that all gluco-
sinolates in mature broccoli might already have been syn-
thesized in the seeds. Thus, there was approximately 15-fold
more glucoraphanin in 3-d-old broccoli sprouts (cv Saga)
than in the florets of mature cultival®”. In addition to gluco-
raphanin, broccoli sprouts also contain two minor gluco-
sinolates that give rise to two ITC (erucin and iberin) that
closely resemble SF in both chemical structure and bioactiv-
ity Although Faulkner and coworkers report that
glucoraphanin content in mature broccoli could be increased
10-fold by crossing broccoli cultivars with selected wild taxa
of the Brassica oleraceal™!, exploitation of broccoli sprouts
may offer an advantage. Investigations have revealed that
although indole glucosinolates (4-hydroxyglucobrassin,
glucobrassicin and neoglucobrassicin) comprised 68% of the
total in mature broccoli (cv Saga), this proportion fell to 3%
in the sprouts™. Similar results were obtained in sprouts
grown from other varieties of broccoli seeds™!. Hydrolysis
of indole glucosinolates by myrosinase yields highly
unstable ITC that spontaneously decompose to compounds
such as indole-3-carbinol, indole-3-acetonitrile and 3,3’-
diindolylmethane, which may have undesired bioactivi-
tiest®38,

We further demonstrated that aqueous extracts of broc-
coli sprouts were an excellent vehicle for delivering the
chemopreventive activity of SF. Feeding rats with broccoli
sprout extracts in which the glucosinolates either remained
intact or were fully converted to ITC resulted in marked inhi-
bition of mammary tumor development in 7,12-dimethylbenz
(a)anthracene-treated female Sprague-Dawley rats*"), and
the chemoprevention efficacy of the extracts was compa-
rable to that of pure SF at similar dose levels®™. The anticar-
cinogenic activity of glucosinolate-containing extracts is
likely to result from the conversion of the glucosinolates to
ITC invivo, as studies have shown that intact glucoraphanin
does not possess significant chemopreventive activity™"3,
and blocking the conversion of glucosinolates to ITC in broc-
coli sprout extracts abolishes the chemopreventive activity
of the extracts®®. The chemopreventive activity of broccoli
sprout extracts has also been demonstrated in other
studiest“**H,

Chemopreventive mechanism of SF: more
than the induction of phase 2 enzymes

Activation of nuclear factor erythroid 2-related factor 2
(Nrf2) and Nrf2 target genes Although SF was isolated
from broccoli on the basis of NQOL1 induction in cultured
Hepa 1c1c7 cells (the Prochaska assay), subsequent studies
have revealed that it was capable of inducing a large number
of phase 2 genes, including epoxide hydrolase*2*I, ferri-
tin®*, glutamate cysteine synthetase!“>*4, glutathione per-
oxidasel**, glutathione reductase!*%, GST"42 heme
oxygenase-11344 thioredoxin and thioredoxin reductaset34
and UDP-glucuronosyltransferase 1A in cultured cells
or rodent tissues in vivo. Thus, SF may significantly streng-
then cytoprotection because these genes are involved in
various aspects of cellular defense against carcinogens and
other toxicities. Extensive mechanistic studies have shown
that the Kelch-like ECH-associated protein 1 (Keapl)-Nrf2-
anti-oxidant response element (ARE) signaling pathway is
primarily responsible for the coordinate response of these
genes to SF. Studies show that the phase 2 genes carry in
their 5’-flanking region one or more cis-acting DNA regula-
tory elements, known as ARE, and activation of ARE leads
to coordinate induction of these genes®™. Nrf2 is the key
ARE activator, which is normally bound by its repressor
Keapl in the cytoplasm and targeted for proteosomal
degradation, but dissociates from the latter in response to
an inducer or other signals. Free Nrf2 translocates to the
nucleus, complexes with other nuclear factors (eg small Maf)
and binds to ARE to activate the transcription of the down-
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stream gene®™. SF was shown to activate Nrf2 by directly
reacting with the sulfhydryl groups of critical cysteine resi-
dues of Keap1™, although a recent study found that modi-
fying specific cysteines of Keapl might be insufficient for
Nrf2 activation® and other studies implicated the mitogen-
activated protein kinase pathway in Nrf2 activation by SF®>%],
Nrf2 knockout rendered phase 2 genes largely unresponsive
to SFI*** and two mouse studies have shown that Nrf2
knockout not only increased the susceptibility of the ani-
mals to chemical carcinogenesis but also abolished the abil-
ity of SF to inhibit carcinogenesis®" . Interestingly, gene-
array studies revealed that SF also upregulated a large num-
ber of non-phase-2 genes, and the response of some of these
genes to SF also depended on the Keapl-Nrf2-ARE path-
way[42’43’59].

Modulation of cytochrome P-450 enzymes In addition
to inducing phase 2 enzymes, several studies have also
shown that SF modulates certain cytochrome P-450 (CYP)
enzymes (phase 1 enzymes). CYP enzymes are important for
normal metabolic processing of numerous endogenous and
exogenous compounds, but may also activate certain
carcinogens. For example, CYP2EL causes the activation of
carcinogens such as N-nitrosodimethylamine®*4 and
CYP1A2 activates 2-amino-1-methyl-6-phenylimidazo(4,5-b)
pyridine (PhIP) ¥4, SF was shown to inhibit the catalytic
activity of a number of CYP enzymes, including CYP1A1,
1A2, 2B1/2, 2E1 and 3A406165881 and to downregulate
CYP3A4 in hepatocytes®. However, feeding rats with SF
elevated CYP1A2 expression® and feeding rats with
glucoraphanin (the SF precursor) elevated CYP1A1, 1A2,
2B1/2, 2C11 and 3A1 in the lungs®. Hence, it remains
unclear if CYP enzymes are relevant targets in SF chemo-
prevention.

Induction of apoptosis and inhibition of proliferation
Induction of apoptosis and inhibition of proliferation are
important mechanisms for the inhibition of carcinogenesis
and cancer growth. In addition to acting as an inducer of
phase 2 genes, numerous studies have also documented the
ability of SF to induce apoptosis and cell cycle arrest in
cancer cell lines derived from bladder®®®, blood!*™,
brain™, breast!™!, colon*™!, ovary!”®, pancreas!”, prost-
atel®”! and skinf®, indicating that this activity is not cell
specific. SF also inhibited the growth of human cancer
xenografts in mice in vivo and tumor tissues of SF-treated
mice showed increased apoptosis ™. SF has been shown
to activate several programmed cell death mechanisms, includ-
ing mitochondria-mediated apoptosist*®#!, death-receptor-
mediated apoptosis®34 and autophagic cell death®), and to
arrest cells in G1 phasel®™#! S phasel® and/or G2/M
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phasel®7"8781 depending on the cell line under study.
Moreover, these and other studies have shown that these
actions of SF are associated with the modulation of many
regulators of cell death and cell cycle, including activation
of mitogen-activated protein kinases, modulation of Bcl-2
family proteins, damage of mitochondria and release of
apoptogenic factors from mitochondria, activation of
caspases, modulation of cyclins and cdks, downregulation
of Cdc25C, upregulation of p21, inhibition of histone
deacetylase and tubulin polymerization!*06879818-231 = The
anticancer activity of SF does not depend on p53 because
SF induced apoptosis in wild-type p53-, mutated p53- and
p53 knockout fibroblasts®®!, induced autophagy in both hu-
man prostate cancer PC-3 cells (p53-deficient) and LNCaP
cells (p53-normal) ™!, and induced G1 arrest in human colon
cancer HT-29 cells in a p53-independent manner®™!, SF may
also potentiate other anticancer agents because it has been
shown to enhance the efficacy of doxorubicin and reverse
doxorubicin-resistant phenotype in mouse fibroblasts with
p53 mutation®7,

Inhibition of angiogenesis and metastasis More recent
studies demonstrate that SF is also capable of inhibiting
angiogenesis and metastasis. Using immortalized human
microvascular endothelial HMEC-1 cells, SF was shown to
potently reduce in vitro formation of microcapillaries, sup-
press capillary-like tube formation on basement membrane
matrix and inhibit cell migration®. These effects were not
due to inhibition of cell proliferation, but were associated
with transcriptional downregulation of factors important for
tumor angiogenesis and metastasis, including vascular
endothelial growth factor (VEGF) and its receptor KDR/flk-1,
hypoxia-inducible factor-1a (Hif-1a), c-Myc and matrix
metalloproteinase (MMP)-2. SF also inhibited the prolifera-
tion and tubular formation on matrigel of human umbilical
vein endothelial cells in vitro®!, and was responsible for
inhibition of MMP-9 activity and invasiveness of human
breast cancer MDA-MB-231 cells by broccoli extractsi*®,
Both MMP-2 and MMP-9 play an important role in cancer
cell invasion™, Inhibition of angiogenesis and metastasis
by SF was also demonstrated in vivo. Intravenous adminis-
tration of non-toxic doses of SF inhibited endothelial cell
response to VEGF in a subcutaneous VEGF-impregnated
matrigel plug mouse model™®. Moreover, although intrave-
nous injection of B16F-10 melanoma cells into C57BL/6 mice
led to formation of lung tumor nodules, SF administered in-
traperitoneally at very low dose (0.5 mg/kg body weight)
markedly inhibited lung tumor nodule formation™®. The
potent inhibitory effect of SF observed in this model did not
appear to result from a cytotoxic effect of SF on B16F-10
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cells, but was associated with inhibition of MMP activation.

Other mechanisms of SF that may also contribute to its
anticarcinogenic and anticancer activity SFtreatment sig-
nificantly enhanced natural killer (NK) cell activity and anti-
body-dependent cellular cytotoxicity in both normal and
Ehrlich ascites tumor-bearing mice, which was accompanied
by increased proliferation of bone marrow cells, splenocytes
and thymocytes, as well as increased production of inter-
leukin-2 and interferon-y™4. Treatment of Raw 264.7 murine
macrophages with SF resulted in the inhibition of lipopoly-
saccharide (LPS)-induced secretion of pro-inflammatory and
procarcinogenic signaling molecules, including nitric oxide,
prostaglandin E, and tumor necrosis factor-o, and nuclear
factor-kappa B (NF-kB) was shown to be the molecular tar-
get of SF®, SF also inhibited diesel-extract-induced pro-
duction of pro-inflammation cytokins in primary human bron-
chial epithelial cells™®. Further studies in human prostate
cancer PC-3 cells showed that suppression of NF-kB and
NF-kB-regulated gene expression involved inhibition of 1kB
kinases (IKK) and IkBa. as well as inhibition of nuclear trans-
location of p65*°". O°-methylguanine-DNA methyltrans-
ferase (MGMT) is a DNA repair protein that protects the
genome against the mutagenic action of alkylating carcino-
gens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-
one (NNK) and nitrosamines. Treatment of human medullo-
blastoma UW228 cells and human colon carcinoma HT29
cells with SF significantly increased MGMT activity™®, Orni-
thine decarboxylase (ODC) is a rate-limiting enzyme in
polyamine biosynthesis, and increased expression of ODC
is linked to tumor promotion. SF was shown to inhibit 12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced ODC activ-
ity in mouse epidermal ME308 cells™®™], SF was also shown
to significantly induce the expression of multidrug-resis-
tance-associated protein 2 (MRP2) in primary hepatocytes
and Caco-2 cells*%, although it did not impact on MRP1
and P-glycoprotein™*, Increased expression of MRP2 may
increase cellular protection against toxic chemicals. More-
over, the antimicrobial activity of SF has long been recog-
nized®! and SF was recently shown to be effective against

Helicobacter pylori, a significant risk factor for gastric can-
cerls71121

Preclinical and clinical evaluation of the in vivo
efficacy of SF

Preclinical A variety of rodent models have been used
to assess the in vivo efficacy of SF, some of which have
been mentioned above. SF was shown to significantly
inhibit tumor development induced by a number of chemical

carcinogens in several rodent organ sites, including colon®*!,
lungs™, mammary™, pancreas™, skin®"® and stomach®®,
and SF was effective when it was given either in the carcino-
gen initiation phase or in the promotion phase. SF is be-
lieved to be responsible for the inhibition of ultraviolet (UV)-
induced skin carcinogenesis by broccoli sprout extracts,
which were applied topically after the completion of UV treat-
ment (during the post-initiation phase) ™. Some of these
studies also highlight the importance of phase 2 induction in
enabling the chemopreventive activity of SF, especially in
the initiation phase, as induction of phase 2 genes in target
tissues has been detected in SF-treated animals®®*], and
knockout of Nrf2 abolished the induction of phase 2 genes
by SF and abrogated the chemopreventive activity of SF'%1,
However, other studies show the importance of other
chemopreventive mechanisms of SF. For example, SF admin-
istered to A/J mice after the completion of a combined treat-
ment of benzo(a)pyrene and NNK inhibited malignant pro-
gression of adenoma to adenocarcinoma in the lungs with a
corresponding increase in apoptotic cells and a decrease in
proliferating cell nuclear antigen expression™*. SF supple-
mented in the diet significantly inhibited the formation of
intestinal polyps in ApcMin/+ mice™®. Tumors in these
mice occur spontaneously because of a mutation of the tu-
mor suppressor adenomatous polyposis coli (APC) gene™*],
Analysis of polyp tissues from SF-treated mice did not indi-
cate induction of phase 2 genes, but instead showed in-
creased apoptosis and decreased proliferation. Further study
of the polyp tissues using a microarray technique showed
that SF treatment caused upregulation of multiple pro-
apoptotic genes and downregulation of multiple pro-survival
genes™, The anticancer activity of SF was further demon-
strated in experiments where SF dosed either orally or intra-
peritoneally significantly inhibited the growth of subcuta-
neous xenografts of human prostate cancer PC-3 cells and
human pancreatic cancer PANC-1 cells in micel’”", and in-
hibited lung tumor formation from intravenous injection of
B16F-10 melanoma cells in mice"®,

Clinical To the best of our knowledge, SF in pure form
has not yet been investigated in humans. However, the dis-
covery of broccoli sprouts as an exceptionally rich source of
SF has provided an alternative to examine its potential im-
pact in humans. A placebo-controlled, double-blind, ran-
domized phase 1 study of broccoli sprout extracts, contain-
ing either glucosinolate (mainlyglucoraphanin) or ITC (mainly
SF), showed that the extracts were well tolerated and caused
no significant adverse effects when the extracts were admin-
istered orally at 8-h intervals for 7 d at doses of 25 and 100
umol glucosinolate or 25 umol ITC*2, In another random-
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ized and placebo-controlled study involving 200 healthy
adults, nightly consumption of hot water infusions of broc-
coli sprouts containing 400 umol glucoraphanin (656 umol
total glucosinolate) for 2 weeks was also well tolerated and
showed no adverse effects™!. Topical application of SF as
high as 340 nmol in the form of broccoli sprout extracts to the
center of a 1-cm-diameter circle of skin in humans caused no
adverse reactions, but NQOI1 activity in the skin tissues was
elevated 1.5-fold and 4.5-fold after application of 150 nmol
SF once or three times, respectively, (at 24 h-intervals) ™.

Metabolism and disposition of SF

Animal and human studies Many lines of evidence indi-
cate that SF is rapidly metabolized through the mercapturic
acid pathway: initial conjugation with glutathione (GSH) pro-
moted by GST gives rise to the corresponding conjugate,
which undergoes sequential enzymatic modifications to form
cysteinylglycine, cysteine and N-acetylcysteine (NAC)
conjugates, which are disposed in urine (Figure 2). Approxi-
mately 72% of a single oral dose of SF was recovered in the
urine as NAC conjugates in rats in 24 h''?%, but only about
1% of the dose was detected in the second 24-h urine sample™",
indicating that urinary elimination occurs almost entirely
within 24 h after SF dosing. Similar changes were seen in
humans because 58.3+2.8% and 77.9+6.4% of a single dose
of approximately 200 pmol ITC (mainly SF) contained in broc-
coli sprout extracts was recovered in the urine as SF equiva-
lents in 8 h and 72 h, respectively, although the levels of free
SF and individual metabolite were not determined"*!. These
results also show that the bioavailability of SF is extremely
high and inter-individual variation of SF absorption and

R-N=C=s$ R-NH-C=$ R-NH-C=8
GST L y-GT ‘
oL h s
|bll y-Glu-Cys-Gly Cys-Gly
v-Glu-Cys-Gly
Glutathione
cG R*NH—?:S AT R- NH—(IE:S
— P ’ v
Cys N-Acetyl-Cys

Figure 2. Metabolism of SF through the mercapturic acid pathway.
The chemical structure of SF is abbreviated as R—-N=C=S, where R
represents CH,;-SO-(CH,),. SF first reacts with glutathione to give
rise to a glutathione—SF conjugate, which is promoted by glutathione
S-transferase (GST). The conjugate undergoes further enzymatic
modification as shown, first by y-glutamyltranspeptidase (y-GT) to
form the cysteinylglycine—SF conjugate, then by cysteinylglycinase
(CG) to form the cysteine—SF conjugate and finally by N-
acetyltransferase (AT) to form the N-acetylcysteine—SF conjugate.
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metabolism is small. Moreover, the urinary SF elimination
pattern was not significantly altered even after repeated SF
dosing (oral broccoli sprout extracts containing 25 pmol ITC
at 8-h intervals for 7 d)!"*'\. The rapid urinary elimination of
SF is closely correlated with its rapid absorption!'*! and short
plasma half-life because plasma concentrations of SF equiva-
lents peaked (0.94-2.27 umol/L) 1 h after feeding the extracts
in the afore-described human experiment (single dose of ap-
proximately 200 umol ITC) and declined with first-order ki-
netics (half-life 1.7740.13 h). Similar results were seen in
other studies in which human subjects were given a single
dose of mature broccoli soup!'*'*!, These studies also re-
vealed that free SF and its cysteine conjugate were more
abundant than the other conjugates in the plasma and that
significant quantities of free SF and cysteine conjugate were
present in the urine in addition to the NAC conjugate. It is
important to note that the thiol conjugates of SF as well as
those of other ITC serve as carriers of ITC'?”, and SF-NAC has
been shown to exhibit equally if not more potent
chemopreventive activities in comparison with SF!%!4125129],

Cell culture studies Studies in cultured cells in our labo-
ratory have provided an explanation for the rapid absorption
and elimination of SF observed in vivo. We have shown that
SF as well as other ITC are rapidly accumulated in cells, but that
the accumulated ITC equivalents are rapidly exported!**'**!
(Figure 3). ITC appear to penetrate cells by diffusion, but
the ITC upon entering the cells is rapidly conjugated with
intracellular thiols. GSH, which is the most abundant intrac-
ellular thiol, is the major driving force for ITC accumulation,
and cellular GST enhances ITC accumulation by promoting
the conjugation reaction. Not surprisingly, [TC that are al-
ready conjugated with thiols are unable to accumulate in
cells!!. Tt has been shown that peak intracellular ITC accu-
mulation is achieved within 0.5-3 h after exposure, reaching
100-200-fold over the extracellular ITC concentration, and
the peak intracellular ITC accumulation levels can reach the
millimolar concentration range. However, intracellularly ac-
cumulated GSH conjugates of ITC, perhaps other conjugates
as well, were also exported rapidly, and this appears to be
mediated at least, in part, by membrane transporter MRP1!"**
134 For example, the half-life of the accumulated SF equiva-
lent in human prostate cancer LNCaP cells was only about 1
h. Thus, continuous intracellular accumulation seems to be
possible only if there is a continuous presence of ITC in the
extracellular space to allow continuous cellular uptake of
ITC to offset the rapid export of accumulated ITC conjugates.

Conclusion and future perspectives

Since SF was reported to be the principle inducer of phase
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Figure 3. Cellular accumulation and export of SF and its chemopreventive mechanism. The chemical structure of SF is abbreviated as R—
N=C=8, where R represents CH;-SO-(CH,),. Cdc25C, cell division cycle 25C; HDAC, histone deacetylase; Keapl, Kelch-like ECH-associated
protein 1; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; MGMT, O°-methylguanine-DNA methyltransferase;

MRP2, multidrug-resistance-associated protein 2; NF-kB, nuclear factor-kappa B; Nrf2, nuclear factor erythroid 2-related factor 2; ODC,

ornithine decarboxylase; VEGF, vascular endothelial growth factor; X-SH, X stands for the side chain of a sulthydryl molecule.

2 enzymes in broccoli in 1992, extensive studies of this com-
pound have followed, which reveal that SF is a highly prom-
ising agent for cancer prevention and perhaps also useful in
cancer therapy. A summary of its cellular uptake and mo-
lecular mechanisms is provided in Figure 3. Given the wide-
spread interest in SF, our understanding about its mecha-
nism as well as its bioactivity will undoubtedly become more
sophisticated. Broccoli sprout extracts are an excellent ve-
hicle for SF delivery and have allowed for human evaluation
of SF in the absence of the approved use of pure SF. In fact,
we are aware that more human trials with this substance are
either ongoing or are to be initiated in the near future. These
studies will not only address the utility of broccoli sprout
extracts for cancer prevention/treatment in humans, but will
also provide critical information as to whether the investiga-
tion of pure SF in humans is warranted. In addition, it is
important to note that a few studies have shown the ability

of SF to enhance the efficacy of another anticancer agent.
More investigations of this ability of SF should be empha-
sized to determine whether SF can be used in combination
therapy.
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